WebAlso, typically Floer cohomology is only invariant under a restricted class of deformations, e.g. Hamiltonian isotopies of L,L′ instead of all Lagrangian isotopies. For a discussion of Lagrangian Floer cohomology in a very general setting, we refer to [5]. Furthermore, sometimes we can define Floer cohomology for half-dimensional submani- In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called … See more Symplectic Floer Homology (SFH) is a homology theory associated to a symplectic manifold and a nondegenerate symplectomorphism of it. If the symplectomorphism is Hamiltonian, the homology arises … See more The Lagrangian Floer homology of two transversely intersecting Lagrangian submanifolds of a symplectic manifold is the homology of a chain complex generated by the intersection points of the two submanifolds and whose differential counts See more Many of these Floer homologies have not been completely and rigorously constructed, and many conjectural equivalences have not been proved. Technical … See more There are several equivalent Floer homologies associated to closed three-manifolds. Each yields three types of homology groups, which fit into an exact triangle. A knot in a three-manifold induces a filtration on the chain complex of each theory, whose … See more This is an invariant of contact manifolds and symplectic cobordisms between them, originally due to Yakov Eliashberg, Alexander Givental See more One conceivable way to construct a Floer homology theory of some object would be to construct a related spectrum whose ordinary homology is the desired Floer homology. Applying … See more Floer homologies are generally difficult to compute explicitly. For instance, the symplectic Floer homology for all surface symplectomorphisms was completed only in 2007. The Heegaard Floer homology has been a success story in this regard: researchers have … See more
Combinatorial Floer homology - web.math.princeton.edu
http://scgp.stonybrook.edu/wp-content/uploads/2014/01/ruberman_simons-instanton-notes.pdf WebQUILTED FLOER COHOMOLOGY 3 H∗(Tn) of Cho [4] for the Clifford torus in CPn, and we calculate some further Floer cohomologies in CPn using reduction at pairs of transverse level sets. Next, we prove Hamiltonian non-displaceability of the Lagrangian 3-sphere Σ ⊂ (CP1)− ×CP2 arising from reduction at the level set of an S1-action on CP2 containing TCl. shtf 50 price
Atiyah-Floer conjecture - Encyclopedia of Mathematics
WebJul 1, 2024 · Atiyah-Floer conjecture. A conjecture relating the instanton Floer homology of suitable three-dimensional manifolds with the symplectic Floer homology of moduli spaces of flat connections over surfaces, and hence with the quantum cohomology of such moduli spaces. It was originally stated by M.F. Atiyah for homology $3$-spheres in [a1]. WebApr 13, 2024 · 作者邀请. Let (M,\omega) be a compact symplectic manifold, and \phi be a symplectic diffeomorphism on M, we define a Floer-type homology FH_* (\phi) which is a gen- eralization of Floer homology for symplectic fixed points defined by Dostoglou and Salamon for monotone symplectic manifolds. These homology groups are modules over … Web1.1 What is Floer (co)homology 1 1.2 General theory of Lagrangian Floer cohomology 5 1.3 Applications to symplectic geometry 13 1.4 Relation to mirror symmetry 16 1.5 Chapter-wise outline of the main results 25 1.6 Acknowledgments 35 1.7 Conventions 36 Chapter 2. Review: Floer cohomology 39 2.1 Bordered stable maps and the Maslov index 39 shtf acronym meaning